ACOUSTIC OSCILLATIONS IN A CAVITY WITH SOURCES AND SINKS

Yu. I. Babenko and O, M, Todes

-This paper describes a method of obtaining the relaxation time of free acoustic oscillations in a cavi-
ty of arbitrary geometry and also the stability limit directly from a consideration of the boundary problem.
The case where the sources and sinks are similar to a solid wall was investigated in [1]. Here we investi-
gate the more general case. The sources and sinks are assumed to be of two types — similar to walls and

to holes.

In [2] a similar examination was made from energy considerations. In the final result, however,
there was an error — the acoustic energy carried by the main flow was not assessed correctly (see below).
A similar error arises out of the general faults of the energy method, which requires a prior knowledge of
all the components of the energy flux.

We also consider induced oscillations.

1. Free Oscillations. We consider the following mathematical model of a gas apparatus. We have a
three-dimensional region (), filled with gas, but not necessarily simply connected. On the surface of the
region there are distributed gas sources. (Henceforth we will use the term source for both sources and
sinks; a sink will be regarded as a negative source). The gas in the cavity is in motion. We assume that
there is a steady-state regime, i.e., the sum of the outputs of the sources is zero.

The equation for acoustic oscillations in a gas moving with velocities much less than the velocity of
sound has the form [3]
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The acoustic velocity potential ® is defined so that
D
u =V, p=—p —pv- VO . (1.2)

Here v=v (r) is the velocity of the main flow, c is the velocity of sound, u and p are the velocity and
pressure in the acoustic wave, and p is the density of gas filling the cavity.

The boundary condition on the surface (S) is expressed in the form of a linear relationship between
the acoustic component of the normal velocity of the gas flow and the acoustic pressure,

un=B(S)p . (1.3)

Here n is the external normal to the surface; B(S) is a quantity characterizing the acoustic properties
of the source and is usually called the acoustic conductivity of the surface. Using (1.2) we rewrite condi-
tion (1.3) in the form
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We consider now the problem of the oscillations given by Eq. (1,1) and (1.4). Assuming &=Uelwt
we obtain the problem for determination of the amplitude of the acoustic potential Ulr)

2im ®2
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aU/on = — (i0pU + pv-VU)B  (S) (1.6)

U=0 (9 (1.5)

Note. Condition (1.6) describes notonly quasi-steady laws of the type (1.3), but also unsteady laws.
For small oscillations the unsteadiness of the law is manifested in a phase shift between u, and p. In this
case B=By +iBy is a complex quantity which depends on the frequency. For the quasi-steady case B is a
real number. For a source B< 0, for a sink B> 0, and for an ideally rigid, nonabsorbing wall B=0.

We will consider sources of two kinds: 1) sources with low acoustic conductivity,
peB £ 1 (1.9)

i.e., similar to a "solid wall". These sources are placed on part of the surface which we will denote by
(C); ID sources with a low impedance,

peB >>1 1.8)

i.e., similar to holes and placed on part of the surface denoted by (0},

Note. A solid wall can be regarded as a type I source for which vyn=0. Thus the whole surface of the
cavity consists of two parts (S=C+0).

We will also assume that the gas in the cavity moves at low velocities, so that
v]e<Zi 1.9

Agsuming that inequalities (1.7)-(1.9) are fulfilled, we can obviously seek the solution of problem
(1.5), (1.6) in the form of a sum

U= Uy + Uy, © = @ + 0 (1.10)
We assume that

U, L Uy vy € Wy (1.11)
Here Uy, «y is the solution of the problem in the zero approximation,

AUo—i—mc—on:O (@), %%’:o ©€), Te=0 (0 (1.12)
We substitute {1.10) in (1.5), (1.6). Neglecting terms of the second order of smallness containing
squares and products of Uj, w;, and v in the region (Q) and on the surface (C) and also the square terms
containing U;/B on the surface (O) we obtain the problem for the determination of U, and wy:

: 2 2
AU G U= Y - V=50 (@) (1.13)
U, :
= =~ i0pBUs © (1.14)
1 au,
i-ﬁ:—-imopU1-— pv - VU, 0) (1.15)
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Henceforth, we will be concerned only with the determination of w; —the increment to the purely
acoustic frequency wy. From the sign of the imaginary part of w; we can determine the stability of the
system, and from the magnitude of w; we can determine the relaxation time.

We can obtain w; from the probilem (1.13)-(1.15) by the following method. We consider Green's
integral identity for the region (£), applied to functions U, and Uj.

S§§ (UsAUy — UsAUy) dQ = CS,FSO (Uo R -0, %%") ds (1.16)

We substitute in (1.16) the expression for AU; from (1.13), the expression for AU from (1.12), the’
value of 8U;/6n on (W) from (1.14), and U; on (H) from (1.15), We also take into account that on the sur-
face (W) 8Uy/dn=0 and on the surface (H) Uy=0. Then from (1.16) we obtain the expression for the incre-
"ment wy:

SSS Ug (v - VU dQ + S(}SpﬂBUo2 dS} +
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Q
We convert (1.17) to a more convenient form. We consider the identity
div (vU) = U2 div v 4 2 (v-yU) Uy (1.18)

Assuming that there are no sources in the volume and the gas can be regarded as incompressible for
v/e<1, we conclude that div v=0, Then, by using the Gauss divergence formula and (1.18) we obtain

2 SSS:!S Uy (v - VUy) dQ = CS_ISO v Uyt s (1.19)

Next, from the fact that on the surface (H) the functionUy =0,it follows that 83Uy/8e; ,=0 (here e; ,
are unit vectors tangential to the surface). Hence,

Uy e Uy U
VU= 0+ G o1+ 5, =5 B (1.20)

Using (1.19) and (1.20) we obtain from (1.17) the main expression for investigating the stability of the
systems:

o oo eJoses s 5 Gty ) ) .

Here we deliberately avoid cancelling the ¢ so that we separate the dimensionless quantities pcB and
vn/c.

The literature contains special cases of formula (1.21) for the simplest one-dimensional problem and
for the cylindrical problem in the absence of a flow.

1t follows from (1.21) that to investigate the stability limit we need to know: 1) the acoustic proper-
ties of the sources (B); 2) the normal component of the veloeity of the main flow at the boundary of the
region {vp); 3) the acoustic field in the absence of sources and sinks (Up).

If Imwy >0, the process is stable, and if Imw 0 it is unstable. Assuming Imw;=0 we can find the
stability limit of the system.

We will discuss more fully the physical sense of Eq. (1.21). The first term represents the inter-
action of sound waves with sources of the wall type. The denominator contains the expression J, which is
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proportional to the total energy of acoustic oscillations in the volume. The numerator is proportional to
the flux of acoustic energy through the surface C in a period. This flux consists of two components. The
first gives the energy flux carried by the waves themselves and the second that carried by the main flow.
That energy can also enter and leave a- cavity when sources interact with an acoustic field is a well-known
fact. Tt is accepted also that the main flow leaving the cavity carries off acoustic energy. Expression
(1.21), however, embodies a fact which was not obvious beforehand — that acoustic energy can be generated
by the main flow when it enters the antinode of the pressure wave. (Since in the sources vy <0 the contribu-
tion of the corresponding terms in Imw; is negative,) Rayleigh [4] was the first to point out the general
possibility of such generation.

Raushenbakh [5] showed from energy considerations that such generation was possible in the one-
dimensional case. We point out that although generation by the flow is expressed by a surface integral
it is a volume factor which is not connected with boundary conditions, but with the convective term in the
wave equation. We note also that in some special cases the flow has no effect on the stability of the system
as a whole. This occurs when

. Cp [O90V po
SS ynDOZdS::O, SJ v, \6n ds =10
[+ o]

The second term in (1.21) represents the interaction of the field with sources of the hole type. The
first term in the numerator gives the energy flux carried across the surface (O) by waves, and the second
term gives that carried by the main flow. As already mentioned, the authors of [2] omitted the term
vn/c® UO/Bn)Z, which represents sound generation by the flow entering an antinode of the velocity wave and
the removal of energy by the flow leaving this antinode. We note that the generation represented by this
term depends on the boundary condition (1.15), i.e., is a surface effect,

By the proposed formalism we can easily obtain corrections to the Eq. (1.21) for the various addi-
tional factors taken into account in the theory of the process, if they have little effect on the acoustics,
which is what usually occurs in practice. We can easily take into account the nonuniformity of the sound
velocity, absorption in the volume, volume sources, etc. For instance, if we take absorption into account
by means of a complex sound velocity c=cy+ic (¢<<¢y), then in the final result (1.21) we will have a cor-
rection,

—;— % SSS SU dQ (1.22)
Q

1t is clear that absorption always stabilizes the process (the contribution to Imw; is positive). For-
mula (1.21) automatically takes into account the case where the acoustic conductivity of the surface depends
on the angle of incidence of the wave (#). For this we merely formally replace B by B(8).

We note that for correctness of the results of the proposed formalism, as A. D, Margolin showed,
the local inequalities (1.7)-(1.9) are, generally speaking, not sufficient. The integral inequalities ob-
tained from Eq. (1.21) will have to be fulfilled, In fact, it was assumed in the deduction that w;<<«y. This
is possible if [see (1.21)]

TC@SS %ercB) U2 ds <€ 1 (1.23)
(o
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J“’OZ.SO —611“1‘ E—)(—#«)d&'<1 1.24)

For instance, for longitudinal oscillations in a cylindrical cavity in which the sources are situated on
the side surface, and a sink on the ends, we obtain fr >m (1.23) the inequality

Un l
(PvB +T>7<<1
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Herel is the length of the cavity and d is its diameter. Thus, the present theory cannot be applied
in the case of a very long cylinder. This corresponds physically to the case where the energy accumulated
in the middle of the cavity during a period cannot be transferred to the walls during this period.

2. Induced Oscillations. We will assume that oscillations are excited on the boundary of the cavity
by a periodic change in the velocity of the gas outflow. Such a case occurs in the case of an oscillating
membrane or siren. (The case where the pressure changes on the boundary of the region can be considered
in the same way.)

Instead of (1.3) we will have the boundary condition
(0] aQ s
%;L-:'_ (p-gt—ﬂ—pv-V(D)B(S)—A(S)e“"t 2.1)

where A(S) —~the amplitude of the induced velocity oscillations —is a fairly small guantity, characterized by
the inequality

Ale<€1 (2.2)

We write the solution in the form of a steady process &=Uel®t, The problem of finding the amplitude
U then reduces to solution of Eq. (1.5) with conditions

Y o i0pBU—A © (2-3)
—;—%:-—ia)pU——pv-VU (©) (2.4)

In the deduction of (2.3) and (2.4) we neglect terms of the second order of smallness, as was done
in the deduction of (1.14), (1.15). We note that in (2.4) the term containing the excitation amplitude A has
disappeared. This means that generation is produced only by sources of the wall type. (In the case of ex-
citation by pressure oscillations, on the other hand, sources of the hole type are important.)

We apply Green's identity to functions U and G, where G is an arbitrary function at present:
)
SSS (UAG — GAD) dQ = SS <U % -G —5%) ds
Q S

Substituting here AU from (1.5), 8U/8n from (2.3), and Ufrom (2.4), we have

SSSU(AG+ %G)dQ_SSSG 2o yuag—
)\

:SS[Z—Z} 4+ G (0BU + A)dS + SS [_a_% -}3—9%+ pv <VU>(;7—— G%%J ds (2.5)
C 0

It follows from (2.5) that the solution of the problem for U depends considerably on whether w is
close to the frequency of natural oscillations in the purely acoustic problem (1.12).

Case 1, The quantity w is not the natural frequency. It can be seen from (2.5) that U is of the same
order of smallness as A. Neglecting terms of the second order of smallness,we obtain

UAG+-‘§G dQ = U-a—G-dS— ngds-l— GAdS (2.6)
§ffo(so+ Se)an={f v oo (FoShas +§

Since G is an arbitrary function, U is the so-called generalized solution [6] of the problem

AU—}—‘Z—D:U:O @, %Z«:—A ©, U=0 (0 2.7)
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1t follows from (2.6) or (2.7) that the oscillations occur as if there were no sources or sinks. The
amplitude of the oscillations is a small quantity of the order of A.

Case 2. The quantity w is often close to the natural frequency «; of the problem (1.12), i.e., w=wy+
wy fwi<wy). Inthis case we can take G =0, where Uy is the solution of problem (1.12). In this case (2.5)
is converted to

2050 200
= 1SSS UUOdQ-—»C—Z—OSSS Uov- V) dQ =
Q

Q
oU [ 1 U i
= SUo(imopBU%—A)dS—l—Sg%(?%»{-pV-VU)'u;TpdS (2.8)
C 0

The latter does not determine U uniquely and, hence, we use the fact that
U (v) = U, () const (2.9)

which is accurate to quantities of the first order of smallness in comparison with Uy. This follows from a
consideration of the problems (1.5), (2.3), and (2.4) by the Fourier method and means physically that the
form of the induced oscillations at resonance frequency is the same as the corresponding form of the free
oscillations. Substituting (2.9) in (2.8) we find the constant and, hence, U(r). Using (1.19) and (1.20), we
write the final expression for the amplitude of induced oscillations at frequency wj +wy:

Uy =i —(%D—SSAUO s - Uy (r) US (pcB + %&) U2dS +
[+] c
+ gcoz SOS (}%B‘ + %) (%%)2 as +2i %1 S§S Uy dQ]_l (2.10)

The amplitude of such oscillations is an order higher than in case 1 and conveys information about
the sources. We note that the formula is true only for a stable system. Near the stability limit the denom-
inator tends to zero, and the solution becomes nonsense if terms of the second order of smallness are
neglected.

For practical purposes it is convenient to have (2.10) in real notation. For the pressure amplitude
we have the expression P=—iwpU (here we omit the small term~v - AU). We algo take into account ab-
sorption in the volume, as was done in the deduction of (1.22). If the rate of induced vibrations of the
velocity varies according to a ~cos wt law, the pressure varies as ~cos(wt — 7).

The pressure amplitude P and phase shift ¥ are, respectively,

pc?

P:VD2+E2

SS APodS - Py (r), =—are tg%— (2.11)
C

D:CS(:S(pcBrJricrL)pMSJr %ij[%<%>r+i_n]<%>2ds+
+ 20 S§S-:—P02 o

c3

E=20 S gS PRdQ—c SCS peBPRAS — 5 S)S - <?>i (WT is (2.12)

Here,

1 1 1
B =Re B, <_B—> = Re (f‘) ,  B;=1ImB, (f) = Jm (%)
r i

We note that Py differs from the solution U, of problem (1.12) only by an insignificant constant factor.
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It follows from (2.11) that in the case of a slow-moving (quasi-steady) position of the resonance the
maximum is attained at a frequency of wy+w,, where

o = -g— [c SCS pcB, P2 dS + “% SOS :c ( = ) @Z") s ] (SSSZS Py d§2>—1 (2.13)

Equations (2.11)-(2.13) can be used to determine the acoustic characteristics Bp(w) and Bj(w of the
gsources. For an investigation of the stability it is important to know the real part of the acoustic conduc-
tivity on a surface of the wall type and the real part of the impedance on a surface of the hole type. The
most convenient experimental method of determining these quantities consists in the following, The fre-
quency w of the induced oscillations is varied slowly in a quasi-steady manner, so that the system passes
through resonance. The amplitude of the induced oscillations passes through a maximum, which is sym-
metric relative to the frequency wy+w;. It follows from (2.11)-(2.13) that the real part of the acoustic
characteristics can be determined uniquely, for instance, from the width of the resonance peak (2w* at
half height,

[4]

+ 20, SSS — py? ds} (S S P2 dsz) (2.14)

Q
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The imaginary parts of the acoustic characteristics of the sources do not affect the shape of the peak
and merely lead to a shift in relation to frequency. For the one-dimensional case this method of deter-
mining the acoustic characteristics is well known in acoustics [7].

Equation (2.14) gives an integral characterization of the sources. Hence, to determine the character-
istics of one of the sources we need to know in the general case the characteristics of the other sources.
In special cases, where sources of the wall type are placed at the pressure nodes, and sources of the hole
type are placed at the velocity nodes, the characteristics of these sources need not be known,
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